2 research outputs found

    Implicit reconstructions of thin leaf surfaces from large, noisy point clouds

    Full text link
    Thin surfaces, such as the leaves of a plant, pose a significant challenge for implicit surface reconstruction techniques, which typically assume a closed, orientable surface. We show that by approximately interpolating a point cloud of the surface (augmented with off-surface points) and restricting the evaluation of the interpolant to a tight domain around the point cloud, we need only require an orientable surface for the reconstruction. We use polyharmonic smoothing splines to fit approximate interpolants to noisy data, and a partition of unity method with an octree-like strategy for choosing subdomains. This method enables us to interpolate an N-point dataset in O(N) operations. We present results for point clouds of capsicum and tomato plants, scanned with a handheld device. An important outcome of the work is that sufficiently smooth leaf surfaces are generated that are amenable for droplet spreading simulations

    Data fusion for a multi-scale model of a wheat leaf surface: a unifying approach using a radial basis function partition of unity method

    Full text link
    Realistic digital models of plant leaves are crucial to fluid dynamics simulations of droplets for optimising agrochemical spray technologies. The presence and nature of small features (on the order of 100μm\mathrm{\mu m}) such as ridges and hairs on the surface have been shown to significantly affect the droplet evaporation, and thus the leaf's potential uptake of active ingredients. We show that these microstructures can be captured by implicit radial basis function partition of unity (RBFPU) surface reconstructions from micro-CT scan datasets. However, scanning a whole leaf (20cm220\mathrm{cm^2}) at micron resolutions is infeasible due to both extremely large data storage requirements and scanner time constraints. Instead, we micro-CT scan only a small segment of a wheat leaf (4mm24\mathrm{mm^2}). We fit a RBFPU implicit surface to this segment, and an explicit RBFPU surface to a lower resolution laser scan of the whole leaf. Parameterising the leaf using a locally orthogonal coordinate system, we then replicate the now resolved microstructure many times across a larger, coarser, representation of the leaf surface that captures important macroscale features, such as its size, shape, and orientation. The edge of one segment of the microstructure model is blended into its neighbour naturally by the partition of unity method. The result is one implicit surface reconstruction that captures the wheat leaf's features at both the micro- and macro-scales.Comment: 23 pages, 11 figure
    corecore